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ABSTRACT

Comparative genome hybridization (CGH) is a laboratory method to measure gains and losses
of chromosomal regions in tumor cells. It is believed that DNA gains and losses in tumor cells
do not occur entirely at random, but partly through some flow of causality. Models that relate
tumor progression to the occurrence of DNA gains and losses could be very useful in hunting
cancer genes and in cancer diagnosis. We lay some mathematical foundations for inferring a

model of tumor progression from a CGH data set. We consider a class of tree models that are

more general than a path model that has been developed for colorectal cancer. We derive a

tree model inference algorithm based on the idea of a maximum-weight branching in a graph,
and we show that under plausible assumptions our algorithm infers the correct tree. We have
implemented our methods in software, and we illustrate with a CGH data set for renal cancer.

Key words: algorithms, branching, cancer genetics, comparative genome hybridization, renal can-

cer, tree inference

1. INTRODUCTION

CANCER IS ASSOCIATED with a sequence of genetic changes that cause the cell cycle division, cell differ-
entiation, or cell death processes to go out of control. Tremendous advances in molecular biology have

enabled researchers to measure genetic changes in tumor cells, but it is still very difficult to distinguish causes

from effects. Cancer genes can be broadly classified into two types: tumor suppressor genes and oncogenes.
A tumor suppressor gene leads to cancer when there is a decrease of expression of the corresponding protein;
an oncogene leads to cancer when there is an increase of expression of the corresponding protein. Our aim
is to infer from the gains and losses of chromosomes and chromosome arms, which chromosomal regions
are most likely to harbor important genes for tumor initiation, and which may be important for progression.
We work with gain and loss information for regions of chromosomes, since this kind of a cytogenetic study
provides a survey of the entire human genome at once. Furthermore, chromosomal alterations are known to
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lead to inactivation of tumor suppressor genes (by loss of chromosomal regions), or to oncogene activation
(by gain of chromosomal regions).

Chromosomal abnormalities in cancer were first discovered in a form of leukemia (Nowell, 1976). During
the past 20 years many forms of leukemia and lymphoma have been found to be associated with specific
alterations. These studies have laid the foundations for contemporary cancer genetics. In solid forms of cancer,
unlike leukemia and lymphoma, the study ofchromosomal alterations has been difficult. An important problem
in solid tumors is that once a set of critical genetic alterations develops, the cancer cell goes "out of control"
and starts to accumulate seemingly random alterations. Since solid tumor samples often contain over a dozen
chromosomal alterations it has proven difficult to identify the primary disease-causing events.

We focus on data collected by one important laboratory technique comparative genome hybridization
(CGH). CGH allows detection of all significant gains and losses in a single experiment per tumor (Kallioniemi
et al, 1992). CGH has opened interesting possibilities for understanding oncogenesis, the process whereby
cancers form. CGH is based on the fact that each chromosomal region of a healthy cell has two copies of its
DNA in a cell. Deviations from this normal level are called copy number aberrations, or CNAs. Significant
deviations, up or down, in a cancerous cell may signal that the region contains genes that play a role in the
development of cancer.

The copy number of chromosomal regions can be measured in the laboratory by measuring fluorescence on

chromosomes where fluorescently labeled tumor DNA and normal DNA have been allowed to bond together.
Comparing with the corresponding numbers in a healthy cell, one can obtain a list of CNAs. This is done
by calculating for each region the ratio of copy numbers between healthy and cancerous cells (by comparing
fluorescence of two colors), and selecting those regions for which this ratio is outside a range defined by a
lower and an upper threshold, r~ < 1 < r+, which take into account natural fluctuations and experimental
error. An example of a successful application of CGH is the localization to chromosome 19 of a gene for
Peutz-Jeghers syndrome (Hemminki et al, 1997), a disease associated with precancerous intestinal polyps.
For a survey of CGH and its applications, see Forozan et al. (1997).

Once we have the list of the copy number aberrations (CNAs) of a particular tumor, we can think of it as

a set of genetic events that took place in some unknown order. It is believed that these events do not occur in
a random fashion, but they are the result of some unknown flow of causality. That is, once an event occurs,
it increases the probability of other events occurring, and so on. In some cases, the connection between one

event and the next will be specific and directly causal, while in other cases the later event occurs seemingly
at random because of the basic genetic instability in a tumor cell. A survey of many CGH studies shows
some consistent patterns as to which CNAs occur most often in some types of tumors (Forozan et al, 1997).
By studying the sets of CNAs from many patients with the same kind of tumor, we may discover common

patterns, ultimately we would like to infer the pathways whereby oncogenesis (the stochastic process in the
genome which ultimately leads to cancer) proceeds. Models for tumor progression pathways would be of
obvious value to the early diagnosis and treatment of cancer.

There has already been important work in this direction, notably the study of colorectal cancer by Vogelstein
et al. (1988). They inferred from a variety of types of data that the progression of colorectal cancer can be
described by a chain of four genetic events, three of which are CNAs. When the first of these events occurs,
the chance of the second event occurring increases, and when the second event occurs the chances of the third
increase, and so on. These events are irreversible, in that once an event occurs it is never undone in the future.
The presence of all four events appears to be an indicator of colorectal cancer. While the path model suggests
a most likely order of occurrence, colorectal cancer is really associated with the accumulation of the genetic
changes on the path (Vogelstein et al, 1988).

The aim of the present paper is to build on the above-mentioned work on inferring the oncogenesis process
from CNA data, and to develop its mathematical and computational foundations. Previous analyses of CGH
data (Kuukasjärvi et al, 1997) suggest that chain ox path models similar to that in Vogelstein et al. (1988) do
not suffice to capture oncogenesis as suggested for colorectal cancer.

Therefore, we consider a more general tree-like model of oncogenesis. In other words, while Vogelstein
et al. (1988) restrict the causal sequence of genetic events causing cancer to straight-line chains such as that
shown in Figure 1 A, we allow a much more general family of models that branch like trees (Figure 1B,C). By
extending the set of models that we can handle, we increase our chances ofcorrectly inferring how oncogenesis
proceeds. Our models explicitly assume that the events may not be independent, in contrast to the work of
Newton et al (1994) who did a statistical analysis of a small set of chromosome loss data collected by
cytogenetic methods. A correct model of oncogenesis would be valuable in suggesting narrow chromosome
regions in which to focus subsequent experimental effort, as well as the relative timing of such efforts.
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FIG. 1. Graph structures of some possible oncogenetic models. Part A is a path; part B is a star; part C is a tree that
is neither a path nor a star; part D shows a two-component forest; and part E shows a directed acyclic graph that is not
a tree. In this paper, we allow structures A-C, but we disallow E. In models such as D, we consider only the component
with vertex r.

In Section 2 of this paper, we develop a mathematical theory of the oncogenesis process for tree-like models.
The mathematical theory borrows from Markov processes and percolation theory. We distinguish between
two styles of models, one akin to network reliability and the other involving time. We also define a statistic that
may be valuable in distinguishing between events that occur early from those that occur late in oncogenesis.

In Section 3, we develop a methodology for inferring an oncogenesis tree from CNA data. Our methodology
involves selecting a set of most relevant events, and then assigning to each pair of such events a weight related
to the probabilities of joint or individual occurrence of these events. From these weights, we can recover the
optimum oncogenesis tree as a maximum-weight branching corresponding to these weights. We prove that,
under mild assumptions, our algorithm discovers the correct tree model of oncogenesis, if supplied with an

appropriate amount of data. Our analysis can be made quantitative to yield an estimation of the amount of data
that would suffice for correct inference with high probability. Sample size estimation is important because
data collection in oncology is costly.

In Section 4, we use our methodology to analyze CNA data for renal cancer from the laboratory of H.M. We
use the efficient algorithm suggested by our method to find a tree model that appears to capture the oncogenesis
process for one category of renal cancer. We conclude in Section 5 with directions for future work.
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2. ONCOGENETIC TREES

The result of a CGH test is a set of genetic events (in particular, a set of CNAs). A series of CGH tests
results in a family of sets of CNAs, that is to say, a set of samples from a probabilistic distribution over all
possible sets of genetic events. A model of oncogenesis should then be a random process which generates
such sets of genetic events, and therefore defines a distribution over sets of genetic events. In this section we

propose several such models, most notably tree-based models.
Let us fix a finite set V of possible genetic events. In practice, the genetic events are reported from

the laboratory as a set of chromosome intervals gained or lost in each tumor. Human chromosomes are
named/numbered 1 to 22 and X and Y (only in males). For our studies, we have ignored Y because it is
small and some of the data sets are female breast cancer samples. All the chromosomes have a long arm,
denoted q. All the chromosomes except 13, 14, 15, 21, and 22 have significant genetic material on the short
arm denoted p. Studies of chromosomes have long relied on the fact that different intervals, called bands,
along the chromosome, are colored differently after applying a stain. When two tumors have CNAs spanning
approximately the same bands, we found it impossible to decide whether these reflect the same genetic change
or not. Therefore, in our data analysis we used only the 41 chromosome arms and gain/loss to distinguish
events. As a result, V contains 82 possible CNAs, plus a root note r. It is possible for the same chromosome
arm to have both a gain and a loss (at different bands) in the same tumor. A (probability) distribution on 2V
is a function p assigning to each subset of V a nonnegative real number, and satisfying JJscv PIS]= ' 

We shall consider graphs whose vertices are the genetic events in V, and which define distributions on 2V. A
rooted tree, or simply tree, on V is a triple T = (V, E, r), where re Visa special vertex called the root, and E
is a set of pairs of vertices such that ( 1 ) for each vertex v e V there is at most one edge (u,v) e E with v as its
second component, (2) there is no edge (u, r) entering r, and (3) there is no cycle, that is, no sequence of edges
in £ of the form ((uo, v\), (u¡, v2),..., (vk-\, Vk), (vk, Do))-For example, the graphs depicted in Figure 1A-D
are trees, while the graph in IE is not. Notice that we allow trees to have disconnected components; for our

analysis the interesting part of a tree will be the one reachable from r. There are two special kinds of trees,
in some sense opposite extreme cases, that are of special interest in our application: A path is a tree with
at most one edge leaving each vertex (Figure 1A). A star is a tree in which all edges leave the root (Figure
IB). Note that what we call "tree" is often called a branching in the optimization literature (Papadimitriou
and Steiglitz, 1982), where the term "tree" is reserved for the undirected version. Throughout this paper we

consistently use the term "tree" mean a directed rooted tree, possibly disconnected; however, for consistency
with the literature, we refer to the algorithm we employ as the "maximum branching algorithm."

A labeled tree T = (V, E, r, a) is a rooted tree with a positive real number a(e) > 0 on each edge e e E.
Labeled trees are useful as generators of distributions on 2V. Suppose that we are given a labeled rooted tree
T = (V, E, r, a), where for all e e E 0 < a(e) < 1. We call such a tree an oncogenetic tree; intuitively,
we can think of a(e) as the probability that edge e is present, with the events "edge e is present" being
independent. We can then carry out the following experiment: Create a subtree of T by including each edge
e with probability a(e), independently; then consider the set S ç V of all vertices reachable from r. S is the
outcome of the experiment. Thus, such an oncogenetic tree T generates a distribution PT on 2V, where for
each S ç V we have

• if r e S and there is a subset E' ç E such that S is the set of all vertices reachable from r in the tree

(V, £", r), then

p[S]=Y\a(e)- f] (1-«((«,!>));
ee£' (K,u)eE,neS,ugS

• otherwise, p[S] = 0.

In significant parts of the paper, we use the logarithm of a probability, rather than the probability itself as an

edge weight.
Oncogenetic trees are a simple but rigorous model of oncogenesis. It is assumed that the causality between

genetic events is tree-like, and that a genetic event causation of a genetic event by another is independent
of other such causations. Both assumptions are questionable, and are made for modeling simplicity and
economy. A further objection, namely that such models do not capture the false positives and negatives due to

experimental inaccuracies in CGH is discussed in the next section. Even if the true causality of oncogenesis
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is a much richer non-tree-directed acyclic graph (that is, even if there is confluence of causality), it is hoped
that most of the causality flows may be low enough in probability, and thus there is a tree-like model that
captures accurately enough the dominant factors in oncogenesis. Similarly, statistical dependence of genetic
events may be approximated adequately by independent edges. In any event, trees are a far richer model than
the path models used so far in this arena (Vogelstein et al, 1988).

The simple oncogenetic tree model we have introduced fails to take into account time, a factor of obvious
importance to oncogenesis. We next introduce a more elaborate model, which we call timed oncogenetic trees.
A timed oncogenetic tree is a labeled tree T

—

(V, E,r,X), together with a distribution tp on the positive reals.
Timed oncogenetic trees represent the following sampling process. First, for each edge e we draw a random
variable /(e), exponentially distributed with mean r4-r. Second, we draw a real number rtot from distribution
<p. We include a vertex v in the outcome of the sampling if and only if there is a path P from r to v in T, and
the sum of all r(e)'s over all edges e on this path is at most rtot.

Thus, in a timed oncogenetic tree we assume that event r happens at time 0 (in the application of this model,
event r will be an extraneous event signaling the beginning of the process). Once event u has happened, for
each edge (u, v) e E event v is a Poisson event with rate X. We select those events that have happened by
time ttou where ttot is drawn from a distribution (¡> which ideally reflects the time, relative to the oncogenetic
process, at which a tumor is sampled from a patient.
2.1. Discussion of the models

The timed oncogenetic tree model is a more realistic model of oncogenesis than the timeless oncogenetic
tree, in which non-intersecting branches of the tree are independent. However, the timeless model also merits
study because (a) it is more tractable mathematically, and (b) it is reasonable to hope that, once the best
timeless oncogenetic tree has been identified, its structure will contain important clues about the best timed
oncogenetic tree. In fact, we can show that in the case ofpaths the two models are equivalent:

Theorem 2.1. Let T = (V, E, r, X) be a timed oncogenetic tree ofpath topology with distribution <p. Then
there is a timeless oncogenetic tree T generating the same distribution.

Proof. Let T = (V, E, r, X) be a timed oncogenetic tree with edges (r, v\), (v\, v2),... (vn-\, v„). We
sample first by choosing ftot according to (p. Let t¡ be the random variable that represents the time at which v¡
occurs. For v¡ e V, define <p¡ to be the distribution of ttol —1¡, conditioned upon t¡ < ttot. Let X be the set of
events that occur before itot.

Supposée' =(r, i;0 has weight À i. Conditioned on itot = s, the probability of Hi e Xisl —e~XlS. Integrating
over s using the distribution <p leads to

/»OO

Pl = P[vi e X] = / (1
-

e-x's)<t>(s)ds.Jo

We thus have a closed form for the edge probability for an edge incident to the root, in terms of the time
distribution <p.

Let e2 = (v\, v2). Define p2 = P[x2 e X \ xx e X]. Since <t>\(t) is the distribution of rtot —1\ conditioned on

vi eX,
/»OO

p2= / (l-e-xn<l>i(s)ds.
Jo

This reasoning can be extended for the entire path. With weight X¡ for each i, we define the distribution </>,
successively as the distribution of itot —1¡ conditioned on v¡ e X. We then define p¡ = p(e¡) for i > 1 by

/»00

Pi= / a-e-^'Wi-tWds.Jo m

This result implies that our methods for reconstructing timeless oncogenetic trees in the next section will
yield the correct timed oncogenetic tree when the underlying timed oncogenetic tree is of a path topology.

Our oncogenetic tree models borrow from the theory of ascending Markov chains andpercolation processes
(for example, see Fill and Pemantle, 1993; Richardson, 1973), known to be valuable as models of physical and
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biological systems. The timeless oncogenetic tree model is partly inspired by the closely related Cavender-
Farris model for evolution (Cavender, 1978; Farris, 1973; Neyman, 1971). A Cavender-Farris tree is also a
rooted tree T = (V, E, r, p) which is also used to generate a distribution on 2V. First, r is in S. Then, for each
edge e = (v¡, v¡), v¡ differs from v¡ with respect to inclusion in S probability pe. If T is of star topology, then
the oncogenetic tree model and the Cavender-Farris tree model are equivalent.

Finally, some notation. All our tree models define distributions on 2V. We shall denote the distribution
induced by oncogenetic tree T (timeless or timed, the context will be clear) as PT  Let P be such a distribution.
We shall need to define various associated probabilities. For v¡, Vj e V, define

• Pi = Ever P(Y)
• PU = ElVhVj]cY P(Y)
• Pi-J = Erher,,^ P(Y)

• «w=m¡
3. THE RECONSTRUCTION PROBLEM

In this section, we address the following important question: Given a set of CGH data, how can we find the
oncogenetic tree, in either model, that bestfits the data ? In its purest form, the problem is one of characterizing
the class of distributions PT, for T an oncogenetic tree. This is not difficult in the case T is either a path (the
support of PT immediately suggests T) or a star (the events should be independent), but very challenging in its
generality. In practice it is further complicated by the fact that CGH data are known to contain false positives
and negatives, corresponding to either experimental or observational errors, or genetic events irrelevant to the
cancer under study. False negatives can be incorporated in our oncogenetic tree model by introducing, for each
vertex v, a new vertex v' with intuitive meaning "genetic event v was observed," and an edge (v, v') with prob-
ability one minus that of the false negative. We see no simple way to incorporate false positives in our models.

In this section we develop a methodology for reconstructing oncogenetic trees from CGH data. We formally
show that, in the absence of experimental errors, and unless the underlying tree has a certain anomaly analogous
to the long branch attraction of Cavender-Farris trees (Felsenstein, 1978), with enough data our method will
correctly reconstruct the oncogenetic tree. Our result leads to explicit estimates on the size of data sets that
are needed for the reconstruction method to be reliable. It is an open problem, discussed in the last section,
how our method fares in theory in the face of experimental errors and false negatives and positives. However,
in the next section we apply it to CGH data for renal cancer, with results that appear to be very satisfactory.
3.1. Reconstruction by maximum branchings

Our approach to the reconstruction problem is the following: Based on the CGH data, we construct a

weight between the genetic events, that is, we assign a real w¡j for each pair (i, j) of genetic events; w¡j
is in general asymmetric. We then find the rooted tree whose total weight (the sum of the weights of all
edges in the tree) is maximized. The key algorithmic ingredient for this is a classical result due to Edmonds
(Edmonds, 1967; Karp, 1971; Tarjan, 1977; Chu and Liu, 1965) stating that the best rooted, directed tree can

be found efficiently—in fact, in 0(n2) time, where n is the number of genetic events. Notice that this is not
the better-known minimum spanning tree problem, which relates to undirected graphs (Papadimitriou and
Steiglitz, 1982). In the application of this method to real data, there is a preprocessing step in which we use a
maximum clique heuristic to omit from further consideration certain genetic events whose occurrence in the
CGH data appears not to be important.

3.1.1. Skewed trees. We need to state and justify some assumptions about the probabilities of (combina-
tions) of events to cope with real data and to prove that our reconstruction algorithm works. First, we need
an assumption about edge probabilities to ensure that events are distinguishable and recognizable. Suppose
e = (v¡, Vj) is an edge in an oncogenetic tree. Were we to allow a(e) to approach 1, the two events i and
j might be indistinguishable. If a(e) —> 0, it may impossible to observe i and j together in any sample of
reasonable size. Furthermore, if v¡ is a vertex unlikely to be in a sample set, then its low probability must be
allowed for. Also, if there is another edge (u,, Vk), we must observe a reasonable number of sample sets where
Vj was included while Vk was excluded, and vice versa.



INFERRING TREE MODELS FOR ONCOGENESIS 43

hard to distinguish.

Rigorously, we exclude all the above difficulties by choosing a constant e > 0 such that p¡ > e for each
event i, and that for each pair of events i, j either \p, 

—

p¡ \ > e, or p¡
—

p¡j > e. The parameter e is critical
later when we estimate the sample size needed to infer the correct tree with high probability.

If we could sample an oncogenetic tree in a noise-free environment, then reconstruction could be done
as follows. We could define the "ancestor" partial order <T by v, <T Vj iff p¡\¡ = 1. We then construct a

tree T which agrees with the partial order. With perfect sampling, this simple algorithm will return T when
enough samples have been taken to distinguish each edge of T. In practice, however, this algorithm will
almost certainly return a star because: (1) even when the model is correct, the CNAs will not always occur in
the order of the model (Vogelstein et al, 1988), (2) some of the CNAs that occur are truly random, and (3)
the CGH experiment sometimes makes errors in reporting the CNAs. In the real data sets we have examined
it is rare to find two events A and B such that both occur in many tumors and the occurrence of A strictly
implies the occurrence of B.

When noise is allowed in the sampling process, edge probabilities must be large enough to distinguish
the influence of edges from the influence of noise. Consider the two timed oncogenetic trees T and 7" of
Figure 2. We can choose the parameters, and the time distribution <p, so that the two distributions Pt and Pt<
are extremely close. For example, let á > 0 be chosen as a very small number. Suppose we use a two-state
time distribution on the value of t, such that t = t\ or t2 each with probability 1/2. We may choose edge
weights for 7", X UX2 such that P[vx eX \ t = tx] = P[v2 eX \ t = t2] = 1/2, while P[v{ eX \t =t2]>l-8,
while P[v2eX\t = ti]<8.

Compare this distribution PT with the distribution PT' generated by taking p$ = 3/4, p¡, = 1/3. (In defining
Pt>, we take advantage of Theorem 2.1.) When noise is allowed, for small values of 8 the two trees are

virtually indistinguishable. Hence, no algorithm will successfully distinguish between the two trees with less
than astronomically large data.

The difficulty with reconstructing T lies in the fact that the distribution does not adequately support the
edge (r, v2) instead of the edge (vi, v2). By allowing the fullest range of edge weights, we open the door to

topological deception. This leads us to the following definition of extreme pathological cases of oncogenetic
trees:

Definition: Let T be an oncogenetic tree, generating distribution PT on V. We say T is skewed if there
exists three distinct vertices v¡, Vj, Vk e V, such that vk is the least common ancestor of v,, v7-, yet p¡y > p¡¡jj\k-

Thus, we say T is skewed if the edge (v¡, Vj) has greater support than the two edges (vk, v¡) and (u*, Vj).
In a timeless oncogenetic tree p¡\¡ = p¡\k < p¡uj\k, so timeless oncogenetic trees are never skewed.

3.1.2. The weight functional. Our next step is to define a weight functional, that is, a mapping from
probability distributions over 2V to real weights for the pairs in V2. We shall use these weights to reconstruct
the oncogenetic tree as the optimum branching (maximum-weight rooted tree) for these weights.

Intuitively, the weight w¡j should reflect the desirability of having j as a direct descendant of i in the tree.
First, it should reflect the likelihood ratio for i and ; occurring together, that is, -^-. There should also be an

asymmetry in the weight as well to reflect which CNA is likely to occur first. If p¡ > pj, this means that event

vl V2

FIG. 2. Two timed oncogenetic trees that may be
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i occurs more often that event j ; hence, it is more advantageous to have an edge from i to j than vice-versa.
This suggests the following functional:

Pi Pu
Wij =-;-Pi+Pj PiPj

To be able to prove that the reconstruction algorithm works, it turns out that the right choice is the logarithm
of the above quantity:

wu = logipij)
-

log(pi +Pj)~ log(pj) (1)
If we were instead solving the minimum spanning tree problem, taking the logarithm or any other monotone
increasing function, of the distances would not change the optimum tree. However, in the more elaborate case

of branching, taking the logarithm may, in rare cases, change the optimum solution.
For weight functional (1), we can prove the following result:

Theorem 3.1. Let T be a nonskewed oncogenetic tree (timeless or timed). Then the maximum branching
over V with respect to the weights defined by equation (l)from the distribution Pj is precisely T.

Since timeless oncogenetic trees are not skewed, and also since each timed oncogenetic path has an equivalent
timeless oncogenetic path (by Theorem 2.1). Theorem 3.1 leads immediately to the following:

Corollary 3.2. Let Tbea timeless or path-like, timed oncogenetic tree. The maximum branching over V
with respect to the weights defined by equation (l)from the distribution PT correctly reconstructs T.

To prove the theorem, let T be a nonskewed oncogenetic tree with root r, and let B be the maximum branch-
ing for the weights defined by equation (1) from the distribution PT. We use three lemmas to show that B

—

T.

Lemma 3.3. The root ofB is r.

For analyzing real data, r is an artificially added vertex, conceptually representing the cell at time 0 with
no CNAs. As such, there is no reason to keep the branching algorithm from artificially making r to be the
root. However, this complicates the algorithm, and since the simpler algorithm returns rasa root, this lemma
is useful.

Proof. Suppose not. Let u, be the root of B, and Vj be the parent of r in B (it may be the case that i = j).
Consider the branching B' obtained by removing the arc (vj, r) and adding the arc (r, v¡). Then

w(B')
—

w(B) = w(r, Vi)
—

w(Vj,r)
= -l0g(l + Pi)

-

l0g(p;) + l0g(l + Pj) > 0. (1)
This contradicts the maximality of B.  

Let <t represent the ancestor relation in T.

Lemma 3.4. Let v¡ e V, Vj ^ r. Let v¡ be the parent ofvj in B. Then v¡ <t vj.

Proof. Suppose not. Choose Vj closest to r in T with parent in B not an ancestor in T. Let v¡ be its parent
in B. Let v* be the least common ancestor of v¡, v¡ in T. Note that by choice of v¡, in B, Vk and all of its
ancestors have parents in B which are ancestors in T.

Consider the branching B' obtained by deleting the edge (v¡, vj) and adding the edge (vk, Vj). By choice
of Vj, adding (vk, Vj) will create no cycles, and thus B' is a valid branching. Observe that

w(B')
—

w(B) = w(Vk, Vj)
—

w(Vj, Vj).
Now w(Vk, Vj) = —\og(pk + Pj) because the other two terms cancel since the occurrence of event j implies
the occurrence of event k. Also, w(v¡, v¡) = log( , Pi\—r). Thus

w(vk, Vj)
-

w(vh vj) = logf Pj(Pi + Pj\) . (2)\Pu(Pj+Pk)J
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Thus, to show w(B) is maximal, it suffices to show Pi++Pi > —. Now & = p¡y, and since T does not exhibit
long branch attraction,

Thus

which leads to

Pi\j < Pivj\k
—

Pi\k + Pj\k
-

Pij\k-

Pi\j + Pij\k < Pi\k + Pj\k,

—

(Pj + Pk) < Pi + Pj,Pj

which is equivalent to the desired inequality p¡\¡ < p,Pl. Thus w(B') > w(B), a contradiction.  

Lemma 3.5. For every v eV, v^r, the parent of v in B is the parent of v in T.

Proof. Suppose not. Let VjeV, with parent v¡. Suppose vk^v¿ is the parent of Vj in B. Then by
Lemma 3.4, vk <t v¡ <j v¡. Consider the branching B' obtained by deleting edge (Vk, Vj ) and adding (v¡, Vj).
(Note that Lemma 3.4 ensures that B' is a branching.) Since w(vk, vf)= —\og(pk + Pj) and w(ví, Vj) =

-\og(pi + pj), and pi < pk, then

w(B')
-

w(B) = log(pk + Pj)
-

log(p, + pj) > 0. (3)
Thus w(B') > w(B), a contradiction.  

To finish the proof of Theorem 3.1, by Lemma 3.3 and Lemma 3.5, B is a spanning tree of V with root
r corresponding to the universal event, such that for each veV, the parent of t; in T is also its parent in B.
Thus, B = T.  

Theorem 3.1 applies when we know the precise probability distribution PT. In practice, however, we know
Pt through samples. It turns out that a slight modification of the proof of the theorem covers this case as well:
Given a set of samples from PT, calculate/?,, and p¡¡, the observed values of p¡ and p¡¡ for v¡, v¡ e V. and
from these w(v¡, Vj) = log(p,y)

—

log(pj)
—

log(p¡ + p¡), the observed value for w(v¡, vf). Find the maximum
branching B with respect to w.

Theorem 3.6. If T is a nonskewed oncogenetic tree, then with sufficiently many samples, the above
algorithm will correctly construct the tree T with high probability.

To verify B = 7\ we use the three lemmas above. We first analyze Lemmas 3.3 and 3.5 because they carry
over to the probabilistic setting easily. Lemma 3.4 is where the nonskewness assumption is used in the proof.
Therefore a more complicated estimation is needed to relate the number of samples needed for the Lemma to

apply to a measure of how strongly the nonskewness assumption holds.
We first test that r is the root of B. By equation (1), r will be the root of B if there are no pairs of vertices

Vi, Vj such that

, (1 +P^ nlog .

J < 0.Pj(\ +Pi)
This is immediate if p¡ < 1 for each event v¡. (If p¡ = \, we may group v¡ with r at the root of the tree.)

We next show that the proof of Lemma 3.5 also carries through for observed probabilities. Let Vk be the
parent of u; in B. Suppose v¡ / Vk is the parent of Vj in T. Consider the branching B' obtained by deleting
edge(v,, Vj) and adding edge (vk, Vj). Then w(B')

—

w(B) = log(pk +ßj)
—

log(p¡ + pj). Presuming that at
least one sample is taken with vk but not v¡,pk > p¡, so w(B') > w(B), which contradicts the maximality of
the weight of B.

We now show that we may extend a version of Lemma 3.4 to the algorithm analysis. For v¡ ^ r, we verify
that if (v¡,Vj)e B, then v¿ is an ancestor of v¡. Suppose not.



46 DESPER ET AL.

Let Vj be the vertex closest to r which has been assigned a nonancestor in T to be its parent in B. Let v¡ be
its parent in B and let vk be the least common ancestor of v¡, Vj in T. Define e¡\j

—

p¡Vj\k
—

Pi\j- Since T is
not skew, e¡\j > 0. Let B' be the branching obtained by deleting edge (v¡, v¡) and adding edge (vk, Vj).

Suppose the branching contains edges (v¡, Vj) where v¡ is not an ancestor of Vj. Let v¡ be the vertex closest
to r which has been assigned a nonancestor in T to be its parent in B. Let v¡ be its parent in B and let vk
be the least common ancestor of v¡, v¡ in T. Let B' be the branching obtained by deleting edge (u¿, v¡) and
adding edge (vk, v¡). Then, referring back to Equation (2),

w( B')
—

w(B) = w(vk, Vj)
—

w(Vi, Vj)
= ^ogipjk)

-

logipk +Pj)~ logO?,,) + log(P, + Pj)
= lJ ß«k+Pjlk \

\Pi\jO +Pj\k)J
\jetei\j =PiVj\k

~

Pi\j- This is the observed value of €¡\j. From the proof of Lemma 3.4, we know that if
êi\j > 0, then w(B') > w(B), a contradiction. Define 8¡y = p¡^

—

p¡\j, and 8iVj¡k = p¡v¡\k
—

P¡vj\k- We will
observeê,|; > 0 if 8¡\j +8¡Vj\k < €í\j- Let e = min,j e¡\j.

We use the Chernoff bound on 8¡\j and 3/u^|* (Alón et al, 1992). We express the Chernoff bound in terms of
a parameter u to be chosen shortly, the number of samples Af, and the smallest probability among the events
we are considering pmin. The Chernoff bound states that

'[*L\SiU> < e-"2'2.
\ZNpmin J

If we let u2 = 8 In n, the right-hand side of the above equals n~4. Thus, for this value of u, we observe that

1
max o¡ |; > < 2n2'

where the maximum is taken over the (p pairs {u,, Vj}. A similar argument shows that

u 1 1
max8iujlk >
• J.k V-WPmin

< 2n2'

where the maximum is taken over the set of triples (/, j, k) such that vk=lca(v¡, Vj). Setting e = -¡¿r-, we

solve for

u2 8 Inn
N

— £ Pmin € Pmin

This proves a quantitative version of Theorem 3.6

Theorem 3.7. IfTisa tree with n vertices (not including the root r), and pmm is the minimum probability
ofobserving any event, and e is defined as above, then with N = \lnn samples of Pj, the probability that the

~

* Pmin
algorithm returns a false edge is less than 1/n .

A realistic size for a tree might be five vertices, not including the artificial root r; this is one more vertex
than in the colorectal cancer path model. Based on the data sets we have seen p„ún = 0.2 is plausible if one

uses only the most common events to build the tree. It is not possible to directly estimate the most important
parameter e. If e = 0.1, it would take a number of samples near 6,400 to get every tree edge correct with
probability of >24/25. The error rate of 1 /25 is appropriate as it loosely corresponds to a p value of 0.04 in
a field where 0.05 is often used as a cutoff. However, the sample size 6,400 is nearly two orders of magnitude
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too large to reasonably expect from CGH studies using current technology. Nevertheless, one would hope that
the tree inferred from a smaller sample still has a high probability having most edges correct.

3.2. The size statistic
In this subsection, we define a statistic that is quite useful for establishing the relative temporal order of

genetic events in oncogenesis. As we shall see, in the case of path trees, this simple statistic is sufficient for
reconstruction.

Let T = (V, E, r, X) he an oncogenetic tree (timeless or timed) with root r and vertex set V. Let s be a

positive, real-valued function on V(T) for a rooted tree T. We say s preserves the order ofT if v¡ <t Vj
implies that s(v¡) < s(vj).

For ve V, define the size of v tobe s(x) = EPt [\X\ | v e X], i.e., the expected number of CNAs in tumors
that contain v. Intuitively, the later v occurs the more likely that it will occur together with more CNAs.

Theorem 3.8. s as defined above preserves tree order.

Proof. Since v¡ <T Vj, if v¡ e X, then v¡ e X. Let p = P[Vj e X\v¡ e X]. We expand

s(v¡) = pE[\X\ : v¡ e X a Vj e X] + (1
-

p)E[\X\ : v¡ e X a v¡ £ X].

To show s(v¡) < s{Vj), it suffices to show

E[\X\ :VieXA v¡ <¿ X] < E[\X\ : vj e X],

which is true because t;, precedes v¡ on the path.
The statistic s is simple, and correctly reconstructs the oncogenetic tree in the special case in which the tree

has a path topology. In general, it may give valuable information on the stage of cancer at which the given
genetic event occurs. The survey article (Forozan et al, 1997) highlights the importance of using CGH data
to identify which CNAs occur early and late in tumor progression; the size statistic gives a simple rigorous
way to make hypotheses, to be tested in the laboratory, about early/late CNAs.

4. AN ONCOGENETIC TREE FOR RENAL CANCER

In this section we describe how to use our methods on a set of 117 cases ofclear cell renal cell carcinoma from
the laboratory of H.M. that was collected using CGH as described in (Jiang et al, 1998; Moch et al, 1996).
Kidney cancer is known to be quite heterogeneous in its histology and its genetic origin (for a recent review, see

Erlandsson, 1998). "Clear cell" describes one histological category of nonpapillary renal carcinoma. Kidney
cancer has both familial and sporadic forms. The familial forms can, for example, be caused by a germ-line
defect (i.e., inherited at birth and present in all cells) in a tumor-suppressor gene. This means typically that the
copy of the gene on one of two homologous pairs of chromosomes is defective at conception, and the cancer

occurs if the other copy gets lost in a renal cell. Most renal cancers (>90%; Motzer et al, 1996) are sporadic
cases where two mutations occur only after birth and only in some cells. The gene, which is responsible for
the development of clear cell renal cell carcinoma associated with the rare von Hippel-Lindau syndrome has
been identified on chromosome arm 3p (Latif et al, 1993). About 70-80% of sporadic clear cell renal cell
carcinomas have a loss of the von Hippel-Lindau gene on chromosome arm 3p (Gnarra et al, 1994; Moch
et al, 1998). Another important example of a type of kidney cancer for which causative genes are known is
papillary renal cell carcinoma for which one specific gene has been identified on chromosome arm lq (Sidhar
et al, 1996; Westerman et al, 1996) and for which the oncogene MET (involved in many types of cancers)
on arm 7q has also been implicated (Schmidt et al, 1997).

Studies of the role of the von Hippel-Lindau gene in renal cancer suggest that it should be affected early
in the oncogenesis process and that a loss of this gene alone may not be sufficient to cause renal cancer. One
example of such a study is that of Thrash-Bingham et al (1995) who used a different laboratory technique
to look for only losses in 33 renal cell carcinomas, of which 13 cases are clear cell renal carcinomas like the
117 we considered. Among those 13 cases Thrash-Bingham et al (1995) observed five losses on 3p, four
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FIG. 3. Graph structure of our oncogenetic model for clear cell renal cell carcinoma.

losses on 14q, three losses on 8p, two losses on 6q, and no other repeated losses. In their overall study, they
concluded that loss of 3p was associated with certain specific other losses, but this does not follow for the 13
clear cell cases alone.

Before applying the branching algorithm it is necessary to select a small set of events to work with that
appear to be most relevant. A model involving all 82 CNA events is clearly not appropriate. Because cancer

inherently involves genetic instability and because CGH does have some false positives, many of the possible
82 events will show up in a small percentage of the tumors. To select events that seem most relevant we used
a clique heuristic on the weighted graph of all 82 events. An alternative method is suggested by Brodeur
et al. (1982), but requires extensive simulations and good prior knowledge of the probability of each event.
A clique is a subgraph in which all pairs of vertices are connected. For the clique computation the weight of
an undirected edge is the sum of the two directed-edge weights defined for the branching computation. We
restricted attention to pairs of events that occurred at least 5 times together in the same tumor. We then found
a maximum-weight clique of size 7. The choice of size 7 was due to time concerns with the clique selection
routine. It is important to select enough events to get an interesting model, while small enough to include
events that occur often enough to be very likely to be relevant to renal cancer. Our clique of size 7 includes:
—4q, —13q, —3p, +17p, +17q, —6q, —9p. We then applied the maximum-weight branching algorithm to
the directed graph of these 7 vertices and the special vertex r. The edge structure of the best tree is shown in
Figure 3.

Our model is consistent with the established theory that a loss on 3p is an early important event for clear
cell renal carcinoma, and suggests that it is not causatively associated with specific other gains or losses. It is
encouraging to see that changes in on lq and 7q associated with papillary renal carcinomas do not show up in
our model. It is also encouraging to see that a loss on 6q, which was one of the three other multiply-occurring
events in (Thrash-Bingham et al, 1995) does get selected in our much larger data set. Our model suggests
that a loss on 4q is an important early event for clear cell renal carcinomas; a loss on 4q was observed in one

case in (Thrash-Bingham et al, 1995). This is also weakly supported by a summary of 3 CGH studies on

renal cancer in (Forozan et al, 1997) that showed a disproportionate number of cases with a loss on 4q, but
this summary mixes together different types of renal cancer.

5. DISCUSSION

CGH is a powerful tool to explore the genetic defects underlying cancer. Since many cancers have heteroge-
neous genetic causes, mathematical modeling should help elucidate which CGH-detected aberrations may be
causative and/or early prognosticators of tumor progression. The cancer genetics community has been quite
excited by the path model for colorectal cancer (Fearon and Vogelstein, 1990), although analysis of CGH
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data for colorectal cancer suggest that it may be oversimplified (Ried et al, 1996). Moreover, other types of
cancer do not seem to have useful path models.

We proposed two classes of tree models to relate CGH data to tumor progression. We described an algorithm
to infer trees from CGH data and we proved that under one assumption about the tree structure, the algorithm
infers the correct tree. We also estimated the sample size needed to get every edge in the tree correct with high
probability. We partially validated our approach on a renal cancer data set. Not enough is known experimentally
about tumor progression and CGH-detectable aberrations to validate our models completely. Along these lines
it should reiterated that the usage of time in our models reflects the inherent "ascertainment bias" that only
tumors, not healthy cells, are sampled, and we know little about how long the tumor has existed when it is
sampled. One could instead imagine that the distribution of the sampling times may depend on the state of the
cell, but such a model seems more appropriate for cell lines grown in a laboratory where repeated sampling
at designated intervals is feasible. The software used in Section 4 is available by sending email to either
r.desper@dfkz-heidelberg.de or schaffer@helix.nih.gov.

Our models imply that tumors of the type in the sample progress by starting at the root (no events) and
then possibly adding any event whose parent in the tree has already been reached. They also imply that
when certain combinations of vertices are reached, the abnormal cell would be sufficiently abnormal to be
considered cancerous. The information we are most interested in, however, is which events are children of
the root (indicative of early events) and which events are parent-child (possible causal relationship). It is
extremely hard to figure out the cause and effect relationships in the laboratory, so a plausible model should
be quite helpful to cancer geneticists.

It is not the case that reaching a single leaf implies cancer, as illustrated by our renal cancer model where
the important event 3p- is a leaf next to the root. Current studies suggest that 3p- alone is insufficient for
a renal cell to be cancerous. Our model suggests that for the type of renal cancer sampled, none of the 6
other events in the model occurs consistently after 3p-, although some of the tumors with 3p- do have many
other gains or losses. We cannot easily infer which reached vertex sets are (not) cancerous because CGH
data sets typically do not contain samples of cells that are abnormal, but not yet cancerous. The path model
for colorectal cancer was in part validated because the genetic events along the path were correlated with
clearly visible, precancerous abnormalities on the colon. An oncologist would have no easy way to sample
precancerous, abnormal cells, except when the abnormality is visible. There are some other cancers, such as

melanoma, that have this helpful feature, but many common cancers such as breast and prostate cancer do not.
Our method of modeling was partly inspired by Cavender-Farris evolutionary trees, especially some un-

derstanding of what conditions make those trees hard to infer correctly (Felsenstein, 1978). A recent poster
abstract by Buetow et al ( 1998) makes a direct connection between phylogenetic inference and tumor model-
ing. Buetow et al ( 1998) used a standard phylogeny software package to build a tree of liver cancer samples, in
which each leaf represents a distinct tumor and each internal vertex represents events whose presence/absence
distinguishes the subtrees below. The purpose was to classify the tumors by their genetic characteristics.
They used loss of heterozygosity of tandem-repeat DNA marker loci as the events. Are there other ways to
mathematically exploit the analogy between evolving species and evolving tumors?

Among the other problems we left open are:

• How can one incorporate false positives into a tree model?
• Is it possible to make the clique heuristic rigorous or to find some other rigorous method for finding the

most important CNA events other than that of (Brodeur et al, 1982)?
• For what other plausible weight functions does the branching construction infer the correct tree with high

probability?
• Suppose the best branching of any topology has weight W, while the star has weight S < W and the best

path has weight P < W. Can these differences in weight be converted into &p value for the hypothesis that
the best model is not a star/path?

• What is the computational complexity of the tree reconstruction problem: Given a probability distribution
P on 2V, find a tree T such that some distance measure between P and P(T) is minimized?
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